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Abstract. We look at a real scalar field in thermal equilibrium in the context of the new normal
ordering and field split defined by Evans and Steer (Evans T S and Steer D A 1996Nucl. Phys.
B 474481). We show that the field split defines a natural canonical transformation, but that this
transformation differs from others known in thermal field theory.

1. Introduction

In a recent work [1], the concept of normal ordering in path-ordered approaches to thermal
field theory [2–6] was discussed. In particular it was shown that with a new definition, one can
ensure that the thermal expectation value of all normal-ordered products are zero. This is true
for all types of fields and for all contours in the complex time plane, including Matsubara’s
imaginary time contour [2]. As a result, the canonical derivation of quantum field theory
(QFT) at finite temperature,T , can be seen to proceed just as at zero temperature. In [1]
normal ordering was defined in terms of the split of the field, sayψ(x), into ‘positive’ and
‘negative’ parts:

ψ(x) = ψ(+)(x) +ψ(−)(x). (1)

In the following discussion we keep the labels ‘positive’ and ‘negative’ even though, as was
shown in [1], the preferredT > 0 split is more general than the usualT = 0 split and isnot a
split into positive and negative energy waves.

We remark that the use of a more general split is natural since in QFT the main task of field
splitting is not so much the separation of the field into positive and negative energy waves,
but its separation into annihilation and creation operators. Thus the real problem is which
definitionof the annihilation and creation operators to use in order to best describe the physical
system under consideration. In other words, it is important to choose the correct physical
representation of the underlying algebraic structure of the theory, since the representations
have a different physical content and the algebra alone does not determine the annihilation and
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creation operators. The fundamental property of QFT is that there are infinitely many such
representations, and this allows it to represent a wide variety of physical phenomena [7].

There are many examples of this. In spontaneous symmetry breaking, the value of the
order parameterselectsthe appropriate physicalvacuumand thus the appropriate representation
of the canonical commutation relations. This means that the irreducible set of physical fields
is not givena priori, but is dictated by the symmetry breaking condition [7]. In a similar
way, in flavour oscillations (such as in kaon or neutrino systems) a non-trivial choice of
appropriate physical vacuum is made [8]. This problem must also be faced when working
with quantum fields in curved space time [9,10] or when studying the canonical quantization
of gravitational wave mode evolution in inflating universe [11]. Closely related is the need to
pick representations carefully when quantizing dissipative systems [12]. In all the above cases,
Bogoliubov transformations [13] play a central role, and the new creation and annihilation
operators defined by such transformations are invariably related by hermitian conjugation†.
Finally, we note that careful attention is needed to define thepropercreation and annihilation
operators in the quantization of two-dimensional gravity models [14].

Returning to the thermal field theory context, it is well known that the very same particle
concept loses any meaning at non-zero temperature [15, 16]. There is, therefore, an intrinsic
physical relevance in the study of how to define and to deal withparticle creation and
annihilation operators, if any, at finite temperature, and in the understanding of to what extent
it is possible to associate a meaning to them in terms of physical excitations. In a word,
the problem of how to construct a formalism which is ‘canonical’ is a crucial, and in some
respects an urgent problem to solve. The discussion we present in this paper is a contribution
in such a direction. Our standpoint is that, in a similar way to classical mechanics and to zero
temperature QFT, searching for and studying the properties of the canonical transformations
of the theory is a priority in order to keep contact with the physical content of the formalism.

It is well known that in thermal field theory, Bogoliubov transformations are central to the
approach known as thermo field dynamics (TFD) [3–5, 16, 17]. There the correct choice of
vacuum depends on the temperature, but otherwise the derivation is very similar to the canonical
approach to zero temperature QFT. An interesting point to note—which will become relevant
later—is that in TFD it is possible to work with a pair of canonical operators which arenot
hermitian conjugates (α 6= 1

2 in the notation of [16]). Such non-hermitian representations give
the same physical results at equilibrium and indeed one (α = 1) is favoured both in and out of
equilibrium [5,16].

Given the prevalence of Bogoliubov transformations in quantum field theory and their
central role in the TFD approach to thermal field theory, it is surprising that no such structure
has been found in the alternative path-ordered approaches to thermal field theory, which is the
context of the new normal-ordered product of [1]. The path-ordered formalisms are all based
on a contour in the complex time-plane which ends−iβ below its starting point [2–6]. They
come in two varieties, real- and imaginary-time formalisms. The real-time versions are distinct
from TFD [4] (for example the various fields and their creation and annihilation operators
have distinct properties) but perturbatively they are completely equivalent in equilibrium, thus
reflecting an underlying relationship [5, 18]‡. In the real-time path-ordered approaches a
thermal Bogoliubov transformation appears, but only post hoc, say when the structure of the
propagator is analysed. However, there is no sign of a thermal Bogoliubov transformation in
the imaginary-time approaches.

† In some of the above situations, since the Lorentz (Poincaré) covariance is lost, the notion of vacuum (and thus of
field splitting into positive and negative frequency parts) is in fact missing. And this brings us back to the problem of
thedefinitionof the annihilation and creation operators [9] and of thepropernormal ordering.
‡ This similarity has led to confusion in the literature over nomenclature.
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The split discovered in [1] by considering normal ordering in path-ordered TFT combines
annihilation and creation operators in a way that is reminiscent of Bogoliubov transformations
used in other problems. The aim of this paper is to elucidate the precise relation between
the split of [1] and canonical transformations. In section 2, we introduce our notation and
summarize the results of [1] focusing on real scalar fields. In section 3 we search for a
canonical structure in those results. This structure is then put in the context of Bogoliubov
transformations in section 4. In section 5 we present our conclusions, and discuss extensions
of our work to other fields.

2. Normal ordering and field splitting

We consider real scalar relativistic fields

φ(x) =
∑
k

1√
2ωkV

(ak(t)e
ik·x + a†

k(t)e
−ik·x) (2)

whereak(t) = e−iωk t ak andV is the volume of the system. The precise form of the dispersion
relation is unimportant; we only require thatωk = ω−k. The annihilation and creation operators
ak, a

†
k obey the canonical commutation relations

[ak, a
†
k′ ] = δk,k′ (3)

and all other commutators are zero. The vacuum state forak is denoted by|0〉; ak|0〉 = 0. We
consider thermal equilibrium and denote thermal averages by double angular brackets:

〈〈· · ·〉〉 = 1

Z
Tr{e−βH . . .}. (4)

Here. . . means any operator,H is the Hamiltonian,Z is the partition function andβ is the
inverse temperature:β = 1/T (kB = 1). The trace is over a complete set of states for the
system. Since we have no chemical potential

〈〈a†
kap〉〉 = nkδk,p 〈〈aka†

p〉〉 = (1 +nk)δk,p (5)

wherenk is given by the Bose–Einstein distribution

nk = 1

eβωk − 1
. (6)

In [1] normal ordering was defined in terms of the arbitrary split (1), so generalizing the
traditionalT = 0 definition. Wealwaysdefine normal ordering to strictly mean that all(+)-
fields are moved to the right of(−)-fields; otherwise the order of the fields is left unchanged.
For example,

N [φ1φ2] = φ(+)1 φ
(+)
2 + φ(−)1 φ

(+)
2 + φ(−)2 φ

(+)
1 + φ(−)1 φ

(−)
2 (7)

whereφi = φ(xi , ti).
Using this generalized definition of normal ordering, it was shown in [1] that Wick’s

theorem holds in its usual formif a split is chosen such that the contraction is ac-number.
This is satisfied by splits (1) which are linear in the annihilation and creation operators and only
these were considered in [1]. It was then shown that if the fields are split such that the thermal
expectation value of two-point normal-ordered products vanish, then the thermal expectation
value of alln-point normal-ordered products vanish.

The only splits which guarantee that〈〈N [φ1φ2]〉〉 = 0 for all times were shown in [1] to
be

φ(+)(x) =
∑
k

1√
2ωkV

[(1− fk)ake−ik.x + gka
†
ke

ik.x ] (8)

φ(−)(x) =
∑
k

1√
2ωkV

[fkake
−ik.x + (1− gk)a†

ke
ik.x ] (9)
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where there are two solutions forfk andgk, namely

fk = −nk + sk[nk(nk + 1)]1/2 gk = −nk − sk[nk(nk + 1)]1/2 (10)

sk = ±1. (11)

Note thatsk can be chosen to be a function of both the sizeanddirection ofk.
These solutions were derived within the context of the path-ordered approaches to thermal

field theory. The solution is independent of the curve chosen and so all the work in [1] and in
the present paper applies to both imaginary-time and all real-time path-ordered approaches to
thermal field theory.

3. Searching for canonical transformations

The split (8), (9) contains factors which are reminiscent of those seen in Bogoliubov
transformations, and particularly those encountered in TFD. It is therefore interesting to see if
this new split defines any new canonical operators and if so, whether those operators can be
given any physical significance.

We may rewrite the split (8), (9) as

φ(+) =
∑
k

dk√
2ωkV

e+ik·xXk(t) φ(−) =
∑
k

dk√
2ωkV

e−ik·xX
[

k(t) (12)

wheredk is a normalization factor to be determined later, and the new operatorsXk andX[k
are given by

Xk(t) = e−iωk t
(1− fk)
dk

ak + e+iωk t
gk

dk
a

†
−k (13)

X
[

k(t) = e−iωk t
fk

dk
a−k + e+iωk t

(1− gk)
dk

a
†
k. (14)

Note that the new definition of normal ordering, (7)–(9), is now equivalent to the rule of putting
all ‘annihilation’ (‘creation’) operatorsXk (X[k) to the right (left), just as we are used to at zero
temperature. We know from the work of [1] that this will guarantee that the thermal expectation
value of any normal-ordered product of fields vanishes. Thus for this finite temperature system,
Xk andX[k seem to mimic the usual creation and annihilation operators.

We have introduced a new operation, which we call ‘flat conjugation’ and denote with a
[ symbol†. Flat conjugation is defined by (14) and it consists of both hermitian conjugation
and the exchangef ↔ g:

A[[f, g] = (A[f, g])[ ≡ (A[g, f ])† (15)

for any operatorA, so that(A[)[ = A. The [-operation is needed because it, and not the
hermitian conjugation, now relates the two parts of the field,

[φ(+)][ = φ(−) 6= [φ(+)]†. (16)

Only atT = 0, wherefk = gk = 0, does[ = † from (15), and there we recover the usual
relationship

[φ(+)][ = [φ(+)]† = φ(−). (17)

If we also enforce that theXk operators satisfy equal time canonical commutation relations

[Xk(t), X
[
p(t)] = δk,p (18)

[Xk(t), Xp(t)] = 0= [X[k(t), X
[
p(t)] (19)

† Throughout this paper we use musical symbols to denote non-hermitian operations. This follows Henning [16]
who uses the ‘sharp’ symbol,], to cope with the non-hermitian nature ofα 6= 1

2 TFD representations.
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we find that the last two equations may only be satisfied if we choosesk = s−k. This determines
the normalization factor,dk, to be

dk = d−k = (1 + 2nk)
1/2. (20)

Thus the normalization factor which appears in the fields (12) is the square root of

d2
k

2ωkV
= 1

2ωkV
coth

(
βωk

2

)
= 1

V

∫
dk0 [θ(k0) + n|k0|]δ(k

2
0 − ω2

k) (21)

which is the familiar phase space density factor of finite temperature field theory.
With a view to the interpretation of theXk operators, observe that there are some bilinear

normal-ordered combinations of theXk which arenotzero when thermal averaged; for example

〈〈X[kX[−k〉〉 = −〈〈XkX−k〉〉 =
√
nk(1 +nk). (22)

This represents a non-trivial problem in any attempt to interpret theXk operators in terms of
some type of new thermal excitation. However, such analysis is better posed in the language of
bilinear transformations [17, 19] including Bogoliubov transformations. In any case the split
(12) is reminiscent of structures seen with Bogoliubov transformations. We now rewrite the
Xk operators in this language.

4. The canonical transformation structure

From the definition ofXk andX[k, we see that they mixak and a†
−k operators carrying

opposite momentum. Such a mixing often appears in many other contexts, e.g. cosmological
perturbations [20] and BCS theory [21]. The important point is that for any givenk 6= 0,
ak, a

†
k commute witha−k, a

†
−k; more generally

[ak, a
†
p] = δk,p, [ak, ap] = [a†

k, a
†
p] = 0. (23)

That is, for a givenk 6= 0, we think of the sets{ak, a†
k} and{a−k, a†

−k} as being independent.
Canonical transformations mixing these two sets [20, 21] arise naturally if we consider the
Fourier amplitudes of the real fieldφ and its conjugateπ(x) = φ̇(x);

φ(x) = 1√
V

∑
k

qk(t)e
ik·x (24)

π(x) = 1√
V

∑
k

pk(t)e
−ik·x. (25)

Here

qk(t) = 1

(2ωk)
1
2

(ak(t) + a†
−k(t)) pk(t) = i

(ωk
2

)1
2
(a

†
k(t)− a−k(t)) (26)

q
†
k(t) = q−k(t) p

†
k(t) = p−k(t) (27)

and

[qk(t), pk′(t)] = iδk,k′ . (28)

Observe first that by definitionpk andqk mix creation and annihilation operators with opposite
momenta. Secondly, consider arescalingoperation of theq andp operators:qk → e−θkqk,
pk → eθkpk. This preserves the commutation relation (28) forany functionθk. However, in
order to preserve the hermitian relationship (27) betweenq andp for positive and negative
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k, one must chooseθk = θ−k. Then the rescaling ofq and p generates a Bogoliubov
transformation amongst the creation and annihilation operators;

ak → bk(θ) = e−iGB(θ)ake
iGB(θ) = ak coshθk − a†

−k sinhθk (29)

a
†
k → b

†
k(θ) = [bk(θ)]

† (30)

a−k → b−k(θ) = e−iGB(θ)a−keiGB(θ) = a−k coshθk − a†
k sinhθk (31)

a
†
−k → b

†
−k(θ) = [b−k(θ)]† (32)

where

GB(θ) = i

2

∑
k

θk[a
†
ka

†
−k − a−kak] (33)

and [bk(θ), b†
p(θ)] = δk,p with all other commutators zero†. This transformation defines a

new vacuum for theb operators

|0(θ)〉〉 = e−iGB(θ)|0〉 bk(θ)|0(θ)〉〉 = 0 (34)

which is orthogonal to〈0| in the infinite volume limit. This leads to relations such as

sinh2(θk) = 〈〈0(θ)|a†
kak|0(θ)〉〉 = 〈0|b†

k(−θ)bk(−θ)|0〉 (35)

where we have used the hermitian property of this transformation to write down the two
equivalent forms. In the context of thermal field theories, theα = 1

2 formulation TFD [3,16,17]
uses a similar Bogoliubov construction. Thereθk is related to the particle number distribution
functions though (35).

It is interesting to note, however, that rescalingq andp with an odd function ofθk leads
to a straight rescaling of the annihilation and creation operators,

ak → a′k(θ) = e
∑

k θkNkake
−∑k θkNk = e−θkak (36)

a
†
k → a

′\
k (θ) = e

∑
k θkNka

†
ke
−∑k θkNk = eθka†

k (37)

where the sum is over all momenta, andNk = a
†
kak. Note that unlike the case of the

Bogoliubov transformation (33), this rescaling transformation doesnot mix operators with
opposite momentum. Thus in fact (36) and (37) hold for all momenta and for any functionθk.
However, only for odd functions does it correspond to a rescaling ofq andp. The important
point to note is that unlike the Bogoliubov transformation, this transformation isnothermitian,
and as a result it is not usually discussed. It does though lead to a canonical set of operators;
[a′k(θ), a

′\
p (θ)] = δk,p with all other commutators zero. Here the ‘natural conjugation’,\,

consists of hermitian conjugation and the replacementθ ↔ −θ (37). Amusingly, if we put
θk = ωkt4, this rescaling is a Euclidean time translation byt4, and such rescalings play a key
role in all path-ordered approaches to thermal field theory. They also appear in TFD forα 6= 1

2
formulations [16]. Thus rescaling transformations are in fact extremely common.

Having turned away from hermitian transformations, we can return to the Bogoliubov
transformation (29)–(32) and note that there is another closely related canonical pair related
by the\ operation:

ak → ck(θ) = 1

mk
bk(θ) = 1

mk
e−iGB(θ)ake

iGB(θ) = 1

mk
[ak coshθk − a†

−k sinhθk] (38)

a
†
−k → c

\

−k(θ) =
1

mk
[b−k(−θ)]† = 1

mk
eiGB(θ)a

†
−ke
−iGB(θ)

† The factor of12 is needed becauseθk andθ−k are regarded as thesameindependent variable. The pointk = 0 is
omitted from the summation.
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= 1

mk
[ak sinhθk + a†

−k coshθk] (39)

a−k → c−k(θ) = 1

mk
b−k(θ) = 1

mk
e−iGB(θ)a−keiGB(θ)

= 1

mk
[a−k coshθk − a†

k sinhθk] (40)

a
†
k → c

\

k =
1

mk
(bk(−θ))† = 1

mk
eiGB(θ)a

†
ke
−iGB(θ) = 1

mk
[a−k sinhθk + a†

k coshθk] (41)

with

mk = m−k = [sinh2 θk + cosh2 θk]
1/2 (42)

where we have usedGB(−θ) = −GB(θ). Observe that the\ conjugation is defined as above,
and that it is responsible for the change of sign in front of sinhθ terms in moving from (38) to
(39), or from (40) to (41). It is also responsible for the origin of the normalization,mk. This
transformation preserves all the commutation relations

[ck, c
\
p] = δk,p [ck, cp] = [c\k, c

\
p] = 0. (43)

Now we return to the case of theXk operators (14). The analysis is made much simpler
by introducing a specific temperature dependent angleσk = σ−k to parameterize theT > 0
split defined by (10). Note thatfk andgk involve the Bose–Einstein distributions through
factors likenk, 1 +nk and their square roots. In many situations in thermal field theory the
special properties of these distributions are crucial and may be encoded by the use of hyperbolic
functions. Thus we are led to write

nk = sinh2(σk) = 1

eβωk − 1
(44)

though this does not fix the sign ofσk. Again, TFD is especially inspirational as it uses the
same parameterization for the Bose–Einstein distributionnk [3–5, 16, 17] though it applies it
in a different way.

In terms ofσk, the functionsfk andgk of (10) can be rewritten as

fk = e−σk sinh(σk) gk = −eσk sinh(σk) (45)

(1− fk) = e−σk cosh(σk) (1− gk) = eσk cosh(σk). (46)

This shows that changing the sign ofσk is equivalent to swapping thefk andgk functions.
Thus[-conjugation is hermitian conjugation plus the exchangeσk ↔ −σk; that is, for some
operatorA[σ ] we have

(A[σk])
[ = (A[−σk])†. (47)

Thus we see that the[ and\ operation are identical if we setθ = σ in the definition of\.
We may now re-write theXk operators of (14) in terms ofσk (dropping thet-dependence

for notational simplicity);

Xk = 1

dk
(cosh(σk)e

−σkak − sinh(σk)e
σka

†
−k) (48)

X
[

k =
1

dk
(sinh(σk)e

−σka−k + cosh(σk)e
σka

†
k) (49)

whereσk = +σ−k, sk = +s−k. From these equations it is straightforward to see that we can
now view theXk operator as being generated by the combination of a scaling transformation,
which generates the parts e−σkak and eσka†

−k of (48) according to (36) and (37), and the new
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transformation of (38)–(41). Thus, depending on the order in which we carry out these two
operations, we may write

Xk = 1

dk
(e−iG′B(σ )e

∑
k σkNkake

−∑k σkNkeiG′B(σ )) (50)

= 1

dk
(e
∑

k σkNke−iGB(σ)ake
iGB(σ)e−

∑
k σkNk) (51)

and

X
[

k =
1

dk
(eiG′B(σ )e

∑
k σkNka

†
ke
−∑k σkNke−iG′B(σ )) (52)

= 1

dk
(e
∑

k σkNkeiGB(σ)a
†
ke
−iGB(σ)e−

∑
k σkNk) (53)

with

dk = d−k = (cosh(2σk))
1/2 = (1 + 2nk)

1/2. (54)

Here

G′B(σ ) =
i

2

∑
k

σk[a
′[
ka
′[
−k − a′−ka′k] = −(G

′[
B(σ ))

[ (55)

where a
′
k and a

′[
k are implicitly functions ofσ and are defined in (36) and (37) (with

θ → σ, \ → [). Thus, finally, we see that the newXk are related to the originalak by a
combination of a Bogoliubov-like transformation (38)–(41) and a scaling transformation (36),
(37).

We can also construct the vacuum,|0X(t)〉, for theXk operators

Xk(t)|0X(t)〉 = 〈0X(t)|X[k(t) = 0. (56)

From (50) we see that the ket vacuum must be

|0X(t)〉 = Ne−iG′B(σ )|0〉 (57)

= N
∏
k

1

cosh(σk)
exp[tanh(σk)a

′[
k(t)a

′[
−k(t)]|0〉. (58)

TheX vacuum is therefore a condensate of zero-momentum pairs ofa-particles. In defining
the bra vacuum, care must be taken to ensure[-conjugation is consistently used rather than
hermitian conjugation. Thus from (52) we can define

〈0X(t)| = (|0X(t)〉)[ 6= (|0X(t)〉)† = 〈0|e+iG′B(σ )N (59)

= 〈0|e−iG′B(σ )N

= 〈0|N
∏
k

1

cosh(σk)
exp[− tanh(σk)a

′
k(t)a

′−k(t)]. (60)

The normalization factorN is not trivial and we find

〈0X(t)|0X(t)〉 = 1⇒ N =
∏
k

d2
k. (61)

In the infinite volume limit we have

〈0X(t)|0〉 〈0|0X(t)〉 → 0 ∀t V →∞. (62)

We now have the full structure of the new operatorsXk and their associated Fock space. At
this stage in the usual examples of Bogoliubov transformations (symmetry breaking, TFD, etc)
we would show that the physical vacuum was the transformed vacuum and not that associated
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with the physical operatorsa. When we attempt to do this here, we find that for a general
operatorA[a, a†] we have

〈0X(t)|A[a, a†]|0X(t)〉 6= 〈〈A〉〉. (63)

For example,

1

〈0X(t)|0X(t)〉 〈0X(t)|a
†
kak|0X(t)〉 =

−1

exp(βωk) + 1
6= nk (64)

1

〈0X(t)|0X(t)〉 〈0X(t)|aka
†
k|0X(t)〉 =

1

exp(−βωk) + 1
6= 1 +nk. (65)

Hence the vector|0X(t)〉 (and〈0X(t)|) is not a thermal vacuum.

5. Conclusion and outlook

In this paper we have discovered a new set of canonical operators for real scalar fields in thermal
equilibrium—theXk of (48) and (49)—for all path-ordered approaches to thermal field theory
such as Matsubara’s imaginary time-formalism. These follow from the redefinition of the
normal-ordered product found necessary if the canonical approach path-ordered thermal field
theory is to proceed in the usual way [1]. We have then shown that theXk are produced from
the original creation and annihilation operators by a pair of transformations, one Bogoliubov-
like and one rescaling (50) and (53). Finding these transformations is not trivial since the
conjugate pairXk andX[k are not related by hermitian conjugation but by our flat conjugation,
(47), so we have had to look beyond the standard transformations of the literature.

Through the use of Bogoliubov transformations in QFT, one is usually able to talk in terms
of quasi-particles, or in the case of TFD one is able to replace the thermal trace with a thermal
vacuum. Unfortunately, both the lack of a hermitian structure and the inability to duplicate
the thermal trace results using the vacuum of theXk operators means that it is difficult to give
a meaning in terms of physical excitations to this new set of canonical operatorsXk. This is
not surprising in view of the mentioned difficulties of defining the particle concept at finite
temperature. What is relevant, and in some sense it is our main result, is that nevertheless,
the formalism may support a canonical transformation structure. Hence, as we have shown,
well-defined vacuum state (and associated Hilbert space) exists. However, such a vacuum is
not the thermal vacuum. At same time, the split in terms of theXk, equations (8), (9) and (12),
guarantees that the thermal averages of alln-point normal-ordered products of fields vanish,
which in turn makes the path-ordered approach to thermal field theory proceed in the usual
way [1].

Finally, there are some other results which are worth noting. There are in fact several
alternative sets of canonical operators based on the thermal normal-ordered product. One could
just mixak anda†

k but keep the same coefficients rather than mixak anda†
−k as we considered

in (14). This, however, would make theXk contain a specific position dependence,X(x).
Alternatively, one can perform a further rescaling of theXk given here,Xk → exp{θk}Xk ,
X
[

k → exp{−θk}X[k for anyθk and keep the commutation relations.
Most interestingly one can exploit the freedom in the sign ofσk and work with an odd

function rather than the even function we have chosen here (equivalent tosk = −s−k in (10)).
Still using the idea that annihilation and creation operators of opposite momenta form mutually
commuting sets, we mix just the annihilation operators (or just creation operators) of opposite
momentum to form new canonical operators,W . This technique works for all types of bosonic
field. For example, in the case of non-relativistic fields we can define four new canonical
operatorsW1,W[

2,W2 andW[

1 based on the split given in [1]. There is some flexibility in the
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notation one can use. If we stick with the flat conjugation definition (47) and demand that
normal ordering of (7) and [1] puts the annihilation operatorsW1,W2 to the right and creation
operatorsW[

1,W
[

2 to the left, then we find that

ψ(+)(x) =
∑
k

1√
2ωkV

[(1− fk)ake−iωteik·x] =
∑
k>0

cosh(σk)

(ωkV )
1
2

W1(k, x)e
−iωt (66)

ψ(−)(x) =
∑
k

1√
2ωkV

[fkake
−iωk teik·x] =

∑
k>0

sinh(σk)

(ωkV )
1
2

W
[

2(k, x)e
−iωk t (67)

ψ†(+)(x) =
∑
k

1√
2ωkV

[gka
†
ke
−iωk teik·x] =

∑
k>0

sinh(σk)

(ωkV )
1
2

[−W2(k, x)]e
−iωk t (68)

ψ†(−)(x) =
∑
k

1√
2ωkV

[(1− gk)a†
ke
−iωk teik·x] =

∑
k>0

cosh(σk)

(ωkV )
1
2

W
[

1(k, x)e
−iωk t (69)

where the sum overk > 0 indicates that we are summing over half ofk space, including only
one of each(k,−k) pair. The commutation relations satisfied by theW are then seen to be

[Wi(k,x),W
[

j (p,x)] =
(

1 0
0 −1

)
δk,p (70)

with other commutators zero. We are currently investigating the structure defined by these
operators and its relation to that defined by theXk.

Acknowledgments

TSE thanks the Royal Society for their support. DAS is supported by PPARC of the UK.
This work was supported in part by the European Commission under the Human Capital and
Mobility programme, contract number CHRX-CT94-0423.

References

[1] Evans T S and Steer D A 1996Nucl. Phys.B 474481
[2] Matsubara T 1955Prog. Theor. Phys.144
[3] Rivers R J 1987Path Integral Methods in Quantum Field Theory(Cambridge: Cambridge University Press)
[4] Landsman N P and van Weert Ch G 1987Phys. Rep.145141
[5] van Weert Ch G 1994Proc. of the Banff/CAP Workshop on Thermal Field Theoriesed F C Khannaet al

(Singapore: World Scientific) p 1
[6] Le Bellac M 1996Thermal Field Theory(Cambridge: Cambridge University Press)
[7] Strocchi F 1985Elements of Quantum Mechanics of Infinite Systems(Singapore: World Scientific)
[8] Blasone M, Henning P A and Vitiello G 1998Preprinthep-th/9803157

Alfinito E, Blasone M, Iorio A and Vitiello G 1996Acta Phys. Pol.B 271493
Alfinito E, Blasone M, Iorio A and Vitiello G 1995Phys. Lett.B 36291
Blasone M and Vitiello G 1995Ann. Phys., NY244283

[9] Martellini M, Sodano P and Vitiello G 1978Nuovo CimentoA 48341
[10] Birrell N D and Davis P C W1988Quantum Field in Curved Space Time(Cambridge: Cambridge University

Press)
[11] Alfinito E, Manka R and Vitiello G 1997Preprinthep-th/9705134
[12] Celeghini E, Rasetti M and Vitiello G 1992Ann. Phys., NY215156

Iorio A and Vitiello G 1995Ann. Phys., NY241496
Srivastava Y N, Vitiello G and Widom A 1995Ann. Phys., NY238200

[13] Bogoliubov N N 1958Sov.Phys.–JETP7 41
Valatin J G 1958Nuovo Cimento7 843

[14] Jackiw R 1995 Two lectures on two-dimensional gravityPreprintgr-qc/9511048
Cangemi D, Jackiw R and Zwiebach B 1996Ann. Phys., NY245408



On normal ordering and canonical transformations 1195

[15] Landsman N P 1988Ann. Phys., NY186141
[16] Henning P A 1995Phys. Rep.253235
[17] Takahashi Y and Umezawa H 1975Collective Phenom.2 55

Umezawa H, Matsumoto H and Tachiki M 1982Thermo Field Dynamics and Condensed States(Amsterdam:
North Holland)

[18] Schmutz M 1978Z. Phys.B 3097
Lawrie I D 1994J. Phys. A: Math. Gen.271435

[19] Barnett S and Knight P 1985J. Opt. Soc. Am.B 21467
Schumaker B L 1986Phys. Rep.135317

[20] Prokopec T 1993Class. Quantum Grav.102295
[21] Fetter A and Walecka J 1971Quantum Theory of Many-Particle Systems(New York: McGraw-Hill)


